Implementation of Coordinate Rotation algorithm for Hardware Multipliers

نویسنده

  • Jack E. Volder
چکیده

10 Abstract— Most of the hardware algorithms exist to handle the hardware intensive signal processing problems. Among these algorithms is a set of shift-add algorithms collectively known as CORDIC for computing a wide range of functions including certain trigonometric, hyperbolic and logarithmic functions. Apart from this it can handle linear functions. Even though numerous articles covering various aspects of CORDIC algorithms, very few surveys concentrate on implementation in FPGAs. CORDIC (Coordinate Rotation Digital Computer) is an algorithm for computing transcendental functions like sine, cosine and arctangent. The method can also be easily extended to compute square roots as well as hyperbolic functions. The algorithm works by reducing the calculation into a number of micro-rotations for which the arctangent value is precomputed and loaded in a table. This method reduces the computation to addition, subtraction, compares, and shifts.Various digital architectures were proposed and compared, including low-cost sequential and high performance pipelined solutions. Fixed point and floating point arithmetic was considered. The concepts were implemented in VHDL, verified and synthesized with Xilinx tools. Selected approach was physically implemented and tested.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fpga Implementation of Cordic Algorithm Architecture

The Coordinate Rotation DIgital Computer (CORDIC) algorithm has been used for many years for efficient implementation of vector rotation operations in hardware. It is executed merely by table look-up, shift, and addition operations. Thus, the corresponding hardware can be implemented in very economic fashion. Subsequently, it has been applied for many performances.CORDIC has been implemented in...

متن کامل

Design and Implementation of a High Speed Systolic Serial Multiplier and Squarer for Long Unsigned Integer Using VHDL

A systolic serial multiplier for unsigned numbers is presented which operates without zero words inserted between successive data words, outputs the full product and has only one clock cycle latency. The multiplier is based on a modified serial/parallel scheme with two adjacent multiplier cells. Systolic concept is a well-known means of intensive computational task through replication of func...

متن کامل

Implementation of Face Recognition Algorithm on Fields Programmable Gate Array Card

The evolution of today's application technologies requires a certain level of robustness, reliability and ease of integration. We choose the Fields Programmable Gate Array (FPGA) hardware description language to implement the facial recognition algorithm based on "Eigen faces" using Principal Component Analysis. In this paper, we first present an overview of the PCA used for facial recognition,...

متن کامل

Reducing Hardware Complexity of Wallace Multiplier Using High Order Compressors Based on CNTFET

   Multiplier is one of the important components in many systems such as digital filters, digital processors and data encryption. Improving the speed and area of multipliers have impact on the performance of larger arithmetic circuits that are part of them. Wallace algorithm is one of the most famous architectures that uses a tree of half adders and full adders to increase the speed and red...

متن کامل

Design and Implementation of a High Speed Systolic Serial Multiplier and Squarer for Long Unsigned Integer Using VHDL

A systolic serial multiplier for unsigned numbers is presented which operates without zero words inserted between successive data words, outputs the full product and has only one clock cycle latency. &#10The multiplier is based on a modified serial/parallel scheme with two adjacent multiplier cells. Systolic concept is a well-known means of intensive computational task through replication of fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002